Aberrant brain dynamics in schizophrenia: delayed buildup and prolonged decay of the visual steady-state response.
نویسندگان
چکیده
In schizophrenia, aberrant brain activity has been reported both during stimulus processing and at rest. Evoked response amplitude is a function of both the number and synchronization of neurons firing in relation to a stimulus. It is at present unclear whether schizophrenia patients have normal synchronization of neural activity in relation to stimulus processing, and whether the amount and time course of synchronization is related to their evoked response amplitudes. EEG brain dynamics in response to visual steady-state stimulation were assessed in 12 schizophrenia and 12 healthy subjects at three stimulation durations (2, 4, and 6 s). Group differences in the visual evoked potential, the visual steady-state response, and the local coherence of the visual steady-state response were evaluated over time. Schizophrenia patients had smaller and delayed event-related potentials. Moreover, they had a slower buildup of steady-state amplitude following stimulation onset and a prolonged decrease after stimulation offset. Groups did not differ during mid-segments of steady-state stimulation. Increase in coherence to stimulation onset did not differ between-groups, but coherence decay of the visual steady-state response following stimulus offset was delayed in schizophrenia patients. The initial response to visual stimulation among schizophrenia subjects, therefore, may be reduced in amplitude due to weak signal strength, not poor coordination between distant cortical regions. The prolonged recovery function of schizophrenia patients' visual system may indicate abnormal nonlinearity in neural response. These findings have implications understanding the nature of evoked response differences between schizophrenia and normal groups especially in repetitive stimulus paradigms.
منابع مشابه
Dynamics Analysis of the Steady and Transient States of a Nonlinear Piezoelectric Beam by a Finite Element Method
This paper presents a finite element formulation for the dynamics analysis of the steady and transient states of a nonlinear piezoelectric beam. A piezoelectric beam with damping is studied under harmonic excitation. A numerical method is used for this analysis. In the paper, the central difference formula of four order is used and compared with the central difference formula of two order in th...
متن کاملOscillations and neuronal dynamics in schizophrenia: the search for basic symptoms and translational opportunities.
A considerable body of work over the last 10 years combining noninvasive electrophysiology (electroencephalography/magnetoencephalography) in patient populations with preclinical research has contributed to the conceptualization of schizophrenia as a disorder associated with aberrant neural dynamics and disturbances in excitation/inhibition balance. This complements previous research that has l...
متن کاملModulation Response and Relative Intensity Noise Spectra in Quantum Cascade Lasers
Static properties, relatively intensity noise and intensity modulation response in quantum cascade lasers (QCLs) studied theoretically in this paper. The present rate equations model consists of three equations for the electrons density in the conduction band and one equation for photons density in cavity length. Two equations were derived to calculate the noise and modulation response. Calcula...
متن کاملDynamic Harmonic Modeling and Analysis of VSC-HVDC Systems
Harmonics have become an important issue in modern power systems. The widespread penetration of non-linear loads to emerging power systems has turned power quality analysis into an important operation issue under both steady state and transient conditions. This paper employs a Dynamic Harmonic Domain (DHD) based framework for dynamic harmonic analysis of VSC-HVDC systems. These systems are wide...
متن کاملUnsteady-state Computational Fluid Dynamics Modeling of Hydrogen Separation from H2/N2 Mixture
3D modeling of Pd/α-Al2O3 hollow fiber membrane by using computational fluid dynamic for hydrogen separation from H2/N2 mixture was considered in steady and unsteady states by using the concept of characteristic time. Characteristic time concept could help us to design and calculate surface to volume ratio and membrane thickness, and adjust the feed conditions. The contribution of resistance be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research. Cognitive brain research
دوره 18 2 شماره
صفحات -
تاریخ انتشار 2004